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Abstract

Adaptive tracking-by-detection methods are widely used
in computer vision for tracking arbitrary objects. Current
approaches treat the tracking problem as a classification
task and use online learning techniques to update the ob-
ject model. However, for these updates to happen one needs
to convert the estimated object position into a set of la-
belled training examples, and it is not clear how best to
perform this intermediate step. Furthermore, the objective
for the classifier (label prediction) is not explicitly coupled
to the objective for the tracker (accurate estimation of ob-
ject position). In this paper, we present a framework for
adaptive visual object tracking based on structured output
prediction. By explicitly allowing the output space to ex-
press the needs of the tracker, we are able to avoid the
need for an intermediate classification step. Our method
uses a kernelized structured output support vector machine
(SVM), which is learned online to provide adaptive track-
ing. To allow for real-time application, we introduce a bud-
geting mechanism which prevents the unbounded growth in
the number of support vectors which would otherwise oc-
cur during tracking. Experimentally, we show that our al-
gorithm is able to outperform state-of-the-art trackers on
various benchmark videos. Additionally, we show that we
can easily incorporate additional features and kernels into
our framework, which results in increased performance.

1. Introduction
Visual object tracking is one of the core problems of

computer vision, with wide-ranging applications including
human-computer interaction, surveillance and augmented
reality, to name just a few. For other areas of computer vi-
sion which aim to perform higher-level tasks such as scene
understanding and action recognition, object tracking pro-
vides an essential component.

For some applications, the object to be tracked is known
in advance, and it is possible to incorporate prior knowledge
when designing the tracker. There are other cases, however,
where it is desirable to be able to track arbitrary objects,

Figure 1. Different adaptive tracking-by-detection paradigms:
given the current estimated object location, traditional approaches
(shown on the right-hand side) generate a set of samples and, de-
pending on the type of learner, produce training labels. Our ap-
proach (left-hand side) avoids these steps, and operates directly on
the tracking output.

which may only be specified at runtime. In these scenarios,
the tracker must be able to model the appearance of the ob-
ject on-the-fly, and adapt this model during tracking to take
into account changes caused by object motion, lighting con-
ditions, and occlusion. Even when prior information about
the object is known, having a framework with the flexibility
to adapt to appearance changes and incorporate new infor-
mation during tracking is attractive, and in real-world sce-
narios is often essential to allow successful tracking.

An approach to tracking which has become particu-
larly popular recently is tracking-by-detection [2], which
treats the tracking problem as a detection task applied over
time. This popularity is due in part to the great deal of
progress made recently in object detection, with many of
the ideas being directly transferable to tracking [2]. An-
other key factor is the development of methods which allow
the classifiers used by these approaches to be trained on-
line, providing a natural mechanism for adaptive tracking,

1



e.g. [3, 10, 16].
Adaptive tracking-by-detection approaches maintain a

classifier trained online to distinguish the target object from
its surrounding background. During tracking, this classi-
fier is used to estimate object location by searching for the
maximum classification score in a local region around the
estimate from the previous frame, typically using a sliding-
window approach. Given the estimated object location, tra-
ditional algorithms generate a set of binary labelled training
samples with which to update the classifier online. As such,
these algorithms separate the adaptation phase of the tracker
into two distinct parts: (i) the generation and labelling of
samples; and (ii) the updating of the classifier.

While widely used, this separation raises a number of is-
sues. Firstly, it is necessary to design a strategy for generat-
ing and labelling samples, and it is not clear how this should
be done in a principled manner. The usual approaches rely
on predefined rules such as the distance of a sample from
the estimated object location to decide whether a sample
should be labelled positive or negative. Secondly, the ob-
jective for the classifier is to predict the binary label of a
sample correctly, while the objective for the tracker is to es-
timate object location accurately. Because these two objec-
tives are not explicitly coupled during learning, the assump-
tion that the maximum classifier confidence corresponds to
the best estimate of object location may not hold (a similar
point was raised by Williams et al. in [22]). State-of-the-
art adaptive tracking-by-detection methods mainly focus on
improving tracking performance by increasing the robust-
ness of the classifier to poorly labelled samples resulting
from this approach. Examples of this include using robust
loss functions [13,14], semi-supervised learning [11,17], or
multiple-instance learning [3, 23].

In this paper we take a different approach and frame the
overall tracking problem as one of structured output pre-
diction, in which the task is to directly predict the change
in object location between frames. We present a novel and
principled adaptive tracking-by-detection framework which
integrates the learning and tracking, avoiding the need for
ad-hoc update strategies (see Figure 1).

Most recent tracking by detection approaches have used
variants of online boosting-based classifiers [3, 10, 16]. In
object detection, boosting has proved to be very successful
for particular tasks, most notably face detection using the
approach of [20]. Elements of this approach, in particular
the Haar-like feature representation, have become almost
standard in tracking by detection research. The most suc-
cessful research in object detection, however, has tended to
make use of support vector machines (SVMs) rather than
boosting, due to their good generalization ability, robust-
ness to label noise, and flexibility in object representation
through the use of kernels [4, 8, 19]. Because of this flexi-
bility of SVMs and their natural generalization to structured

output spaces, we make use of the structured output SVM
framework of [18]. In particular, we extend the online struc-
tured output SVM learning method proposed in [5, 6] and
adapt it to the tracking problem. We find experimentally
that the use of our framework results in large performance
gains over state-of-the-art tracking by detection approaches.

In [4], Blaschko and Lampert apply a structured output
SVM to the task of object detection. In our setting there is
no offline labelled data available for training (except the first
frame which is assumed to be annotated) and instead online
learning is used. However, online learning with kernels suf-
fers from the curse of kernelization, whereby the number of
support vectors increases with the amount of training data.
Therefore, in order to allow for real-time operation, there is
a need to control the number of support vectors. Recently,
approaches have been proposed for online learning of clas-
sification SVMs on a fixed budget, meaning that the number
of support vectors is constrained to remain within a speci-
fied limit, e.g. [7, 21]. We apply similar ideas in this work,
and introduce a novel approach for budgeting which is suit-
able for use in an online structured output SVM framework.
We find empirically that the introduction of a budget brings
large gains in terms of computational efficiency, without
impacting significantly on the tracking performance of our
system.

2. Online structured output tracking

2.1. Tracking by detection

In the following section, we provide an overview of tra-
ditional adaptive tracking-by-detection algorithms, which
attempt to learn a classifier to distinguish a target object
from its local background.

Typically, the tracker maintains an estimate of the po-
sition p ∈ P of a 2D bounding box containing the target
object within a frame ft ∈ F , where t = 1, . . . , T is the
time. Given a bounding box position p, a classifier is ap-
plied to features extracted from an image patch within the
bounding box xp

t ∈ X . The classifier is trained with ex-
ample pairs (x, z), where z = ±1 is the binary label, and
makes its predictions according to ẑ = sign(h(x)), where
h : X → R is the classification confidence function.

During tracking, it is assumed that a change in position
of the target can be estimated by maximising h in a local re-
gion around the position in the previous frame. Let pt−1 be
the estimated bounding box at time t− 1. The objective for
the tracker is to estimate a transformation (e.g. translation)
yt ∈ Y such that the new position of the object is approx-
imated by the composition pt = pt−1 ◦ yt. Y denotes our
search space and its form depends on the type of motion to
be tracked. For most tracking-by-detection approaches this
is 2D translation, in which case Y = {(u, v) | u2 + v2 <
r2}, where r is a search radius. Mathematically, an estimate



is found for the change in position relative to the previous
frame according to

yt = arg max
y∈Y

h(x
pt−1◦y
t ), (1)

and the tracker position is updated as pt = pt−1 ◦ yt.
After estimating the new object position, a set of training

examples from the current frame is generated. We separate
this process into two components: the sampler and the la-
beller. The sampler generates a set of n different transfor-
mations {y1

t , . . . ,y
n
t }, resulting in a set of training samples

{xpt◦y1
t

t , . . . ,x
pt◦yn

t
t }. After this process, depending on the

classifier type, the labeller chooses labels {z1
t , . . . , z

n
t } for

these training examples. Finally, the classifier updates using
these training examples and labels.

There are a number of issues which are raised by this ap-
proach to tracking. Firstly, the assumption made in (1) that
the classification confidence function provides an accurate
estimate of object position is not explicitly incorporated into
the learning algorithm, since the classifier is trained only
with binary labels and has no information about transfor-
mations. Secondly, examples used for training the classifier
are all equally weighted, meaning that a negative example
which overlaps significantly with the tracker bounding box
is treated the same as one which overlaps very little. One
implication of this is that slight inaccuracy during tracking
can lead to poorly labelled examples, which are likely to re-
duce the accuracy of the classifier, in turn leading to further
tracking inaccuracy. Thirdly, the labeller is usually cho-
sen based on intuitions and heuristics, rather than having a
tight coupling with the classifier. Mistakes made by the la-
beller manifest themselves as label noise, and many current
state-of-the-art approaches try to overcome this problem by
using robust loss functions [13, 14], semi-supervised learn-
ing [11,17], or multiple-instance learning [3,23]. We argue
that all of these techniques, though justified in increasing
the robustness of the classifier to label noise, are not ad-
dressing the real problem which stems from separating the
labeller from the learner. The algorithm which we present
does not depend on a labeller, and tries to overcome all these
problems within a coherent framework by directly linking
the learning to tracking and avoiding an artificial binariza-
tion step. Sample selection is fully controlled by the learner
itself, and relationships between samples such as their rela-
tive similarity are taken into account during learning.

To conclude this section, we describe how a conventional
labeller works, as this provides further insight into our algo-
rithm. Traditional labellers use a transformation similarity
function to determine the label of a sample positioned at
pt ◦ yi

t. This function can be expressed as spt
(yi

t,y
j
t ) ∈ R

which, given a reference position pt and two transforma-
tions yi

t,y
j
t , determines how similar the resulting samples

are. For example, the overlap function defined by

sopt
(yi

t,y
j
t ) =

(pt ◦ yi
t) ∩ (pt ◦ yj

t )

(pt ◦ yi
t) ∪ (pt ◦ yj

t )
(2)

measures the degree of overlap between two bounding
boxes. Another example of such a function is based on the
distance of two transformations sdpt

(yi
t,y

j
t ) = −d(yi

t,y
j
t ).

Let y0 denote the identity (or null) transformation,
i.e. p = p ◦ y0. Given a transformation similarity func-
tion, the labeller determines the label zit of a sample gener-
ated by transformation yi

t by applying a labelling function
zit = `(spt(y

0,yi
t)). Most commonly, this can be expressed

as

`(spt
(y0,yi

t)) =

 +1 for spt(y
0,yi

t) > θu
−1 for spt(y

0,yi
t) < θl

0 for otherwise
(3)

where θu and θl are upper and lower thresholds, respec-
tively. A binary classifier generally ignores the unlabelled
examples [10], while those based on semi-supervised learn-
ing use them in their update phase [11, 17]. In approaches
based on multiple-instance learning [3,23], the labeller col-
lects all the positive examples in a bag and assigns a positive
label to the bag instead. Most, if not all, variants of adap-
tive tracking-by-detection algorithms use a labeller which
can be expressed in a similar fashion. However, it is not
clear how the labelling parameters (e.g. the thresholds θu
and θl in the previous example) should be estimated in an
online learning framework. Additionally, such heuristic ap-
proaches are often prone to noise and it is not clear why
such a function is in fact suitable for tracking. In the sub-
sequent section, we will derive our algorithm based on a
structured output approach which fundamentally addresses
these issues and can be thought of as a generalization of
these heuristic methods.

2.2. Structured output SVM

Rather than learning a classifier, we propose learning a
prediction function f : X → Y to directly estimate the
object transformation between frames. Our output space is
thus the space of all transformations Y instead of the binary
labels ±1. In our approach, a labelled example is a pair
(x,y) where y is the desired transformation of the target.
We learn f in a structured output SVM framework [4, 18],
which introduces a discriminant function F : X × Y → R
that can be used for prediction according to

yt = f(x
pt−1

t ) = arg max
y∈Y

F (x
pt−1

t ,y). (4)

Note the similarity between (4) and (1): we are performing
a maximisation step in order to predict the object transfor-
mation, however now the discriminant function F includes



the label y explicitly, meaning it can be incorporated into
the learning algorithm. To update the prediction function
online, we supply a labelled example relative to the new
tracker location (xpt

t ,y
0).

F measures the compatibility between (x,y) pairs, and
gives a high score to those which are well matched. By
restricting this to be of the form F (x,y) = 〈w,Φ(x,y)〉,
where Φ(x,y) is a joint kernel map (to be defined later), it
can be learned in a large-margin framework from a set of
example pairs {(x1,y1), . . . , (xn,yn)} by minimising the
convex objective function

min
w

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. ∀i : ξi ≥ 0

∀i,∀y 6= yi : 〈w, δΦi(y)〉 ≥ ∆(yi,y)− ξi

(5)

where δΦi(y) = Φ(xi,yi) −Φ(xi,y). This optimization
aims to ensure that the value of F (xi,yi) is greater than
F (xi,y) for y 6= yi, by a margin which depends on a loss
function ∆. This loss function should satisfy ∆(y, ȳ) = 0
iff y = ȳ and decrease towards 0 as y and ȳ become more
similar. The loss function plays an important role in our
approach, as it allows us to address the issue raised previ-
ously of all samples being treated equally. Note that in our
definition, this loss function can also be expressed in terms
of the transformation similarity function introduced in the
previous section. For example, as in [4] we choose to base
this loss function on bounding box overlap, and use

∆(y, ȳ) = 1− sopt
(y, ȳ), (6)

where sopt
(y, ȳ) is the overlap measurement (2).

2.3. Online optimization

To optimize (5) in an online setting, we use the approach
of [5,6]. Using standard Lagrangian duality techniques, (5)
can be converted into its equivalent dual form

max
α

∑
i,y 6=yi

∆(y,yi)α
y
i −

1

2

∑
i,y 6=yi
j,ȳ 6=yj

αy
i α

ȳ
j 〈δΦi(y), δΦj(ȳ)〉

s.t. ∀i,∀y 6= yi : αy
i ≥ 0

∀i :
∑
y 6=yi

αy
i ≤ C

(7)
and the discriminant function can be expressed as
F (x,y) =

∑
i,ȳ 6=yi

αȳ
i 〈δΦi(ȳ),Φ(x,y)〉. As in the case

of classification SVMs, a benefit of the dual representa-
tion is that because the joint kernel map Φ(x,y) only
ever occurs inside inner products, it can be defined im-
plicitly in terms of an appropriate joint kernel function

Algorithm 1 SMOSTEP

Require: i, y+, y−
1: k00 = 〈Φ(xi,y+),Φ(xi,y+)〉
2: k11 = 〈Φ(xi,y−),Φ(xi,y−)〉
3: k01 = 〈Φ(xi,y+),Φ(xi,y−)〉
4: λu = gi(y+)−gi(y−)

k00+k11−2k01

5: λ = max(0,min(λu, Cδ(y+,yi)− βy+

i ))
6: Update coefficients
7: β

y+

i ← β
y+

i + λ
8: β

y−
i ← β

y−
i − λ

9: Update gradients
10: for (xj ,y) ∈ S do
11: k0 = 〈Φ(xj ,y),Φ(xi,y+)〉
12: k1 = 〈Φ(xj ,y),Φ(xi,y−)〉
13: gj(y)← gj(y)− λ(k0 − k1)
14: end for

k(x,y, x̄, ȳ) = 〈Φ(x,y),Φ(x̄, ȳ)〉. The kernel functions
we use during tracking are discussed in Section 2.5.

As in [5], by reparametrising (7) according to

βy
i =


− αy

i if y 6= yi∑
ȳ 6=yi

αȳ
i otherwise, (8)

the dual can be considerably simplified to

max
β

−
∑
i,y

∆(y,yi)β
y
i −

1

2

∑
i,y,j,ȳ

βy
i β

ȳ
j〈Φ(xi,y),Φ(xj , ȳ)〉

s.t. ∀i,∀y : βy
i ≤ δ(y,yi)C

∀i :
∑
y

βy
i = 0

(9)
where δ(y, ȳ) = 1 if y = ȳ and 0 otherwise. Note that
this also simplifies the discriminant function to F (x,y) =∑

i,ȳ β
ȳ
i 〈Φ(xi, ȳ),Φ(x,y)〉. In this form we refer to those

pairs (xi,y) for which βy
i 6= 0 as support vectors, and those

xi included in at least one support vector as support pat-
terns. Note that for a given support pattern xi, only the
support vector (xi,yi) will have βyi

i > 0, while any other
support vectors (xi,y), y 6= yi, will have βy

i < 0. We
refer to these as positive and negative support vectors re-
spectively.

The core step in the optimisation algorithm of [5, 6] is
an SMO-style step [15] which monotonically improves (9)
with respect to a pair of coefficients βy+

i and β
y−
i . Be-

cause of the constraint
∑

y β
y
i = 0, the coefficients must be

modified by opposite amounts, βy+

i ← β
y+

i + λ, βy−
i ←

β
y−
i − λ, leading to a one-dimensional maximisation in λ

and can be solved in closed form (Algorithm 1).



The remainder of the online learning algorithm centres
around how to choose the triplet (i,y+,y−) which should
be optimised by this SMO step. For a given i, y+ and y−
are chosen to define the feasible search direction with the
highest gradient, where the gradient of (9) with respect to a
single coefficient βy

i is given by

gi(y) =−∆(y,yi)−
∑
j,ȳ

βȳ
j 〈Φ(xi,y),Φ(xj , ȳ)〉

=−∆(y,yi)− F (xi,y).

(10)

Three different update steps are considered, which map very
naturally onto a tracking framework:

• PROCESSNEW Processes a new example (xi,yi). Be-
cause all the βy

i are initially 0, and only βyi

i ≥ 0, y+ =
yi. y− is found according to y− = arg miny∈Y gi(y).
During tracking, this corresponds to adding the true la-
bel yi as a positive support vector, and searching for
the most important sample to become a negative sup-
port vector according to the current state of the learner,
taking into account the loss function. Note, however,
that this step does not necessarily add new support vec-
tors, since the SMO step may not need adjust the βy

i

away from 0.

• PROCESSOLD Processes an existing support pattern
xi chosen at random. y+ = arg maxy∈Y gi(y), but
a feasible search direction requires βy

i < δ(y,yi)C,
meaning this maximization will only involve exist-
ing support vectors. As for PROCESSNEW, y− =
arg miny∈Y gi(y). During tracking, this corresponds
to revisiting a frame for which we have retained some
support vectors, and potentially adding another sample
as a negative support vector, as well as adjusting the
associated coefficients. Again, this new sample is cho-
sen to take into account the current learner state and
loss function.

• OPTIMIZE Processes an existing support pattern xi

chosen at random, but only modifies coefficients of
existing support vectors. y+ is chosen as for PRO-
CESSOLD, and y− = arg miny∈Yi gi(y), where Yi =
{y ∈ Y | βy

i 6= 0}.

Of these cases, PROCESSNEW and PROCESSOLD both
have the ability to add new support vectors, which gives the
learner the ability to perform sample selection during track-
ing and discover important background elements. This se-
lection involves searching over Y to minimise gi(y), which
may be a relatively expensive operation. In practice, we
found for the 2D translation case it was sufficient to sample
from Y on a polar grid, rather than considering every pixel

offset. The OPTIMIZE case only considers existing support
vectors, so is a much less expensive operation.

As suggested in [6], we schedule these update steps as
follows. A REPROCESS step is defined as a single PRO-
CESSOLD step followed by nO OPTIMIZE steps. Given a
new training example (xi,yi) we call a single PROCESS-
NEW step followed by nR REPROCESS steps. In practice
we typically use nO = nR = 10.

During tracking, we maintain a set of support vectors S.
For each (xi,y) ∈ S we store the coefficients βy

i and gra-
dients gi(y), which are both incrementally updated during
an SMO step. If the SMO step results in a βy

i becoming 0,
the corresponding support vector is removed from S.

2.4. Incorporating a budget

An issue with the approach described thus far is that the
number of support vectors is not bounded, and in general
will increase over time. Evaluating F (x,y) requires eval-
uating inner products (or kernel functions) between (x,y)
and each support vector, which means that both the compu-
tational and storage costs grow linearly with the number of
support vectors. Additionally, since (10) involves evaluat-
ing F , both the PROCESSNEW and PROCESSOLD update
steps will become more expensive as the number of support
vectors increases. This issue is particularly important in the
case of tracking, as in principle we could be presented with
an infinite number of training examples.

Recently a number of approaches have been proposed
for online learning of classification SVMs on a fixed bud-
get [7, 21], meaning the number of support vectors cannot
exceed a specified limit. If the budget is already full and
a new support vector needs to be added, these approaches
identify a suitable support vector to remove, and potentially
adjust the coefficients of the remaining support vectors to
compensate for the removal.

We now propose an approach for incorporating a budget
into the algorithm presented in the previous section. Simi-
lar to [21], we choose to remove the support vector which
results in the smallest change to the weight vector w, as
measured by ‖∆w‖2. However, as with the SMO step used
during optimization, we must also ensure that the constraint∑

y β
y
i = 0 remains satisfied. Because of the fact that there

only exists one positive support vector for each support pat-
tern, it is sufficient to only consider the removal of negative
support vectors during budget maintenance. In the case that
a support pattern has only two support vectors, then this will
result in them both being removed. Removing the negative
support vector (xr,y) results in the weight vector changing
according to

w̄ = w − βy
r Φ(xr,y) + βy

r Φ(xr,yr), (11)

meaning



Algorithm 2 Struck: Structured Output Tracking
Require: ft, pt−1, St−1

1: Estimate change in object location
2: yt = arg max

y∈Y
F (x

pt−1

t ,y)

3: pt = pt−1 ◦ yt

4: Update discriminant function
5: (i,y+,y−)← PROCESSNEW(xpt

t ,y
0)

6: SMOSTEP(i,y+,y−)
7: BUDGETMAINTENANCE()
8: for j = 1 to nR do
9: (i,y+,y−)← PROCESSOLD()

10: SMOSTEP(i,y+,y−)
11: BUDGETMAINTENANCE()
12: for k = 1 to nO do
13: (i,y+,y−)← OPTIMIZE()
14: SMOSTEP(i,y+,y−)
15: end for
16: end for
17: return pt, St

‖∆w‖2 = βy
r

2{〈Φ(xr,y),Φ(xr,y)〉 +

〈Φ(xr,yr),Φ(xr,yr)〉 − 2〈Φ(xr,y),Φ(xr,yr)〉
}
.

(12)

Each time the budget is exceeded we remove the support
vector resulting in the minimum ‖∆w‖2. We show in the
experimental section that this does not impact significantly
on tracking performance, even with modest budget sizes,
and improves the efficiency. We name the proposed algo-
rithm Struck, and show the overall tracking loop in Algo-
rithm 2. Our unoptimized C++ implementation of Struck is
publicly available1.

2.5. Kernel functions and image features

The use of a structured output SVM framework provides
great flexibility in how images are actually represented. As
in [4], we propose using a restriction kernel, which uses
the relative bounding box location y to crop a patch from
a frame xp◦y

t , and then applies a standard image kernel be-
tween pairs of such patches,

kxy(x,y, x̄, ȳ) = k(xp◦y, x̄p̄◦ȳ). (13)

The use of kernels makes it straightforward to incorpo-
rate different image features into our approach, and in our
experiments we consider a number of examples. We also
investigate using multiple kernels in order to combine dif-
ferent image features together.

1http://www.samhare.net/research

3. Experiments

3.1. Tracking by detection benchmarks

Our first set of experiments aims to compare the re-
sults of the proposed approach with existing tracking-by-
detection approaches. The majority of these are based
around boosting or random forests, and use simple Haar-
like features as their image representation. We use similar
features for our evaluation in order to provide a fair com-
parison and isolate the effect of the learning framework,
but note that these features were specifically designed to
work with the feature-selection capability of boosting, hav-
ing been originally introduced in [20]. Even so, we find that
with our framework we are able to significantly outperform
the existing state-of-the-art results.

We use 6 different types of Haar-like feature arranged on
a grid at 2 scales on a 4 × 4 grid, resulting in 192 features,
with each feature normalised to give a value in the range
[−1, 1]. The reason for using a grid, as opposed to random
locations, is partly to limit the number of random factors in
the tracking algorithm, since the learner itself has a random
element, and partly to compensate for the fact that we do
not perform feature selection. Note, however, that the num-
ber of features we use is lower than systems against which
we compare, which use at least 250. We concatenate the
feature responses into a feature vector x, and apply a Gaus-
sian kernel k(x, x̄) = exp(−σ‖x − x̄‖2), with σ = 0.2
and C = 100 which is fixed for all sequences. Like the
systems against which we compare, we track 2D transla-
tion Y = {(u, v) |u2 +v2 < r2}. During tracking we use a
search radius r = 30 pixels, though when updating the clas-
sifier we take a larger radius r = 60 to ensure stability. As
mentioned in Section 2.3, we found empirically that search-
ing Y exhaustively during online learning was unnecessary,
and it is sufficient to sample from Y on a polar grid (we use
5 radial and 16 angular divisions, giving 81 locations).

To assess tracking performance, we use the Pascal VOC
overlap criterion as suggested in [16], and report the aver-
age overlap between estimated and ground truth throughout
each sequence. Because of the randomness involved in our
learning algorithm, we repeat each sequence 5 times with
different random seeds, and report the median result.

Table 1 shows the results obtained by our tracking frame-
work, Struck, for various budget sizes B, along with pub-
lished results from existing state-of-the-art approaches [1,
3, 10, 12, 16]. It can be seen from these results that the
proposed system outperforms the current state of the art
on almost every sequence, often by a considerable margin.
These results also demonstrate that the proposed budget-
ing mechanism does not impact significantly on tracking re-
sults. Even when the budget is reduced as low as B = 20
we outperform the state-of-the-art on 4 out of 8 sequences.

In Figure 2 we show some examples of the support vec-

http://www.samhare.net/research


Sequence Struck∞ Struck100 Struck50 Struck20 MIForest OMCLP MIL Frag OAB
Coke 0.57 0.57 0.56 0.52 0.35 0.24 0.33 0.08 0.17
David 0.80 0.80 0.81 0.35 0.72 0.61 0.57 0.43 0.26
Face 1 0.86 0.86 0.86 0.81 0.77 0.80 0.60 0.88 0.48
Face 2 0.86 0.86 0.86 0.83 0.77 0.78 0.68 0.44 0.68
Girl 0.80 0.80 0.80 0.79 0.71 0.64 0.53 0.60 0.40
Sylvester 0.68 0.68 0.67 0.58 0.59 0.67 0.60 0.62 0.52
Tiger 1 0.70 0.70 0.69 0.68 0.55 0.53 0.52 0.19 0.23
Tiger 2 0.56 0.57 0.55 0.39 0.53 0.44 0.53 0.15 0.28
Average FPS 12.1 13.2 16.2 21.4

Table 1. Average bounding box overlap on benchmark sequences. The first four columns correspond to our method with different budget
size indicated by the subscript, and the rest of the columns show published results from the state-of-the-art approaches. The best performing
method is shown in bold. We also show underlined the cases when Struck with the smallest budget size (B = 20) outperforms the state-
of-the-art. The last row gives the average number of frames per second for an unoptimized C++ implementation of our method.

tor set S at the end of tracking withB = 642. An interesting
property which can be observed is that the positive support
vectors (shown with green borders) provide a compact sum-
mary of the change in object appearance observed during
tracking. In other words, our tracker is able to identify dis-
tinct appearances of the object over time. Additionally, it
is clear that the algorithm automatically chooses more neg-
ative support vectors than positive. This is mainly because
the foreground can be expressed more compactly than the
background, which has higher diversity3.

(a) girl (b) david

Figure 2. Visualisation of the support vector set S at the end of
tracking with B = 64. Each patch shows xp◦y

t , and positive and
negative support vectors have green and red borders respectively.
Notice that the positive support vectors capture the change in ap-
pearance of the target object during tracking.

3.2. Combining kernels

A benefit of the framework we have presented is that it is
straightforward to use different image features by modify-
ing the kernel function used for evaluating patch similarity.
In addition, different features can be combined by averag-
ing multiple kernels: k(x, x̄) = 1

Nk

∑Nk

i=1 k
(i)(x(i), x̄(i)).

2Chosen to organize the support vectors in a square image.
3Please refer to supplementary material for illustrative videos.

Such an approach can be considered a basic form of multi-
ple kernel learning (MKL), and indeed it has been shown [9]
that in terms of performance full MKL (in which the rela-
tive weighting of the different kernels is learned from train-
ing data) does not provide a great deal of improvement over
this simple approach.

In addition to the Haar-like features and Gaussian kernel
used in Section 3.1, we also consider the following features:

• Raw pixel features obtained by scaling a patch to
16 × 16 pixels and taking the greyscale value (in the
range [0, 1]). This gives a 256-D feature vector, which
is combined with a Gaussian kernel with σ = 0.1.

• Histogram features obtained by concatenating 16-bin
intensity histograms from a spatial pyramid of 4 lev-
els. At each level L, the patch is divided into L ×
L cells, resulting in a 480-D feature vector. This
is combined with an intersection kernel: k(x, x̄) =
1
D

∑D
i=1 min(xi, x̄i).

Table 2 shows tracking results on the same benchmark
videos, with B = 100, and all other parameters as speci-
fied in Section 3.1. It can be seen that the behaviour of the
individual features are somewhat complementary. In many
cases, combining multiple kernels seems to improve results.
However, it is also noticeable that the performance gains
are not significant for some sequences. This could be be-
cause of our naı̈ve kernel combination strategy and as has
been shown by other researchers, e.g. [10], feature selection
plays a major role in online tracking. Therefore, further in-
vestigation into full MKL could potentially result in further
improvements.

4. Conclusions
In this paper, we have presented a new adaptive tracking-

by-detection framework based on structured output predic-
tion. Unlike existing methods based on classification, our



Seq. A B C AB AC BC ABC
Coke 0.57 0.67 0.69 0.62 0.65 0.68 0.63
Dav. 0.80 0.83 0.67 0.84 0.68 0.87 0.87
Face1 0.86 0.82 0.86 0.82 0.87 0.82 0.83
Face2 0.86 0.79 0.79 0.83 0.86 0.78 0.84
Girl 0.80 0.77 0.68 0.79 0.80 0.79 0.79
Sylv. 0.68 0.75 0.72 0.73 0.72 0.77 0.73
Tig.1 0.70 0.69 0.77 0.69 0.74 0.74 0.72
Tig.2 0.57 0.50 0.61 0.53 0.63 0.57 0.56

Av. 0.73 0.73 0.72 0.73 0.74 0.75 0.75

Table 2. Combining kernels. A: Haar features with Gaussian ker-
nel (σ = 0.2); B: Raw features with Gaussian kernel (σ = 0.1);
C: Histogram features with intersection kernel. The rows are in the
same order as in Table 1. The bold shows when multiple kernels
improve over the best of individual kernels, while the underline
shows the best performance within the individual kernels. The last
row shows the average of each column.

algorithm does not rely on a heuristic intermediate step for
producing labelled binary samples with which to update the
classifier, which is often a source of error during tracking.
Our approach uses an online structured output SVM learn-
ing framework, making it easy to incorporate image features
and kernels. From a learning point of view, we take ad-
vantage of the well-studied large-margin theory of SVMs,
which brings benefits in terms of generalization and robust-
ness to noise (both in the input and output spaces). To
prevent unbounded growth in the number of support vec-
tors, and allow real-time performance, we also introduced a
budget maintenance mechanism for online structured output
SVMs. We showed experimentally that our algorithm gives
superior performance compared to state-of-the-art trackers.

We believe that the structured output framework we pre-
sented provides a very rich platform for incorporating ad-
vanced concepts into tracking. For example, it is relatively
easy to extend the output space to include rotation and scale
transformations. We also plan to incorporate object dynam-
ics into our model. While these extensions focus on the
output space, we can also enrich our input space through the
use of alternative image features and multiple kernel learn-
ing.
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